## Early Detection of Aquatic Invasive Species Using eDNA Technology

### How MiCorps Volunteers Can Help!

### Maggie Kronlein

Pls: Drs. Jo Latimore, Syed Hashsham, Erin Dreelin, and R. Jan Stevenson Michigan State University

5/1/14

# What is environmental DNA?

DNA released into the environment by an organism by:

- Scraped-off tissue cells
- Feces or excrements
- Fish slime
- Reproduction: Eggs, veligers, juvenilles, larva, etc.
- Cells released after organism death/decay
- Free-floating DNA released from any cell lysis

### eDNA can be used for:

- Validating presence or absence of an organism in an area
- Creating distribution maps to determine how wide-spread the invasion is
- Confirming results obtained via sightings

# Why eDNA for detecting invaders? 1. Sensitivity



Above: Data from Darling & Mahon 2011 depicting the likelihood increased of detection lower for target **DNA-based** densities via methods tradition over methods

2. Cost

<u>Below</u>: Data from **Hayes et al 2005** depicting the cost and 95% sensitivity of various green mussel identification methods



## **Project Overview**

- eDNA-based monitoring
- Community-based sampling
- Smart phone-based reporting



eDNA-based Monitoring of High Risk Invasive Species for the Protection of Great Lakes



#### Hydrilla



#### Fishhook Water Flea



# **Target Species**

#### Northern Snakehead



[shopboblake.blogspot.com]

### Killer Shrimp



#### Golden Mussel



[http://biolo.bg.fcen.uba.ar /primerapagina.htm]

### Daphnia cristata



# Gene-Z<sup>™</sup> for detecting eDNA



Gene-Z uses microfluidic chips that allow easy dispensing of samples into reaction wells. Decentralized detection of gene targets in a field setting!







# Preliminary eDNA results

Zebra Mussel primer sets in 1  $\mu$ l lake water samples



Minimal/ no sample processing is required at high abundances!

## Sampled locations



Unfortunately, a lot of these samples are from fall and winter. Results were not as sensitive as they may have otherwise been.

## Some invasive mussel results







# How can volunteers help?

## We need help collecting samples!





### Two Types of Samples are collected:

- 1. Collect 1 Liter of lake water sample
- 2. Filter 20 Liters of water through a filter funnel



## The Sampling Kit

- One 1 Liter Filtration Bottle
- One 1 Liter water sample bottle
- One Sampling Information Sheet
- One Sampling Protocol Sheet
- One 50 mL Tube
- One Shipping Box with Prepaid Postage and Mailing Address



#### Just place samples in freezer overnight, then ship back the next day!

# Samples will be tested for:

### Potential Invasive Species

- Golden Mussel
- Northern Snakehead
- Hydrilla

- Daphnia cristata
- Killer Shrimp

We can also add species if there is a particular one you are interested in!

### Present Invasive Species

- Spiny Waterflea
- Fishhook Waterflea
- Sea Lamprey
- Round Goby
- Zebra Mussel
- Quagga Mussel
- Rusty Crayfish
- Asian Clam
- New Zealand Mudsnail
- Rock Snot
- Cylindrospermopsis raciborskii
- Starry stonewort



### Emailed results!

| General Information     |                                                            |  |
|-------------------------|------------------------------------------------------------|--|
| Sample Submitted By:    | John Smith                                                 |  |
| Lake Name:              | Lake Lansing                                               |  |
| Sample Collected at:    | Lake Lansing Park South<br>Meridian Township, MI           |  |
| Sampling Date:          | 10/1/2013                                                  |  |
| Sample Types Submitted: | 1 Bottles of Pure Lake Water<br>1 50 mL tube with Filtrate |  |
| Sample Analyzed by:     | Maggie Kronlein                                            |  |
| Analysis Date:          | 10/3/13                                                    |  |

## Emailed results!

W/W

#### **Invasive Species Results**

| Common Name        | Scientific Name         | Present/Absent |
|--------------------|-------------------------|----------------|
| Golden Mussel      | Limnoperna fortunei     | Not Detected   |
| Northern Snakehead | Channa argus            | Not Detected   |
| Hydrilla           | Hydrilla verticillata   | Not Detected   |
| Daphnia            | Daphnia cristata        | Not Detected   |
| Killer Shrimp      | Dikerogammarus villosus | Not Detected   |
| Zebra Mussel       | Dreissena polymorpha    | Detected       |
| Quagga Mussel      | Dreissena bugensis      | Not Detected   |
| Fishhook Waterflea | Cercopagis pengoi       | Not Detected   |
| Spiny Waterflea    | Bythotrephes longimanus | Not Detected   |
| Sea Lamprey        | Petromyzon marinus      | Not Detected   |
| Round Goby         | Neogobius melanostomas  | Not Detected   |
| Rusty Crayfish     | Orconectes rusticus     | Not Detected   |

# What comes after a positive test?

- Input eDNA results into the iSAW database for public access
- Results can assist in management / screening
  - Should we be on the lookout for invaders in the first place?
- Allow for the validation of field sampling studies
- Help determine a level of infestation (Low, Moderate, High)
- Determine the distribution of invaders in an area
- Gene-Z<sup>TM</sup> devices will be distributed to individual in MiCorps!

### Early detection is crucial to successful eradication!

# iSAW for results and reporting



### **Almost Ready!**



# Acknowledgements



### This work is supported by the Environmental Protection Agency Great Lakes Restoration Initiative (EPA GLRI) Grant Number: GL-00E01127-0

Special Thanks to the eDNA Team:

Dr. Robert Stedtfeld, Cathrine Kronlein, Tiffany Stedtfeld, and Michael Stevens.