Aerations Effect on Algae: a review of success and failures

Patrick Goodwin Vertex Research Biologist Lake Management M.S. Candidate SUNY Oneonta

http://www.vertexwaterfeatures.com

Phone: 800-432-4302 patrick.goodwin@vertexwaterfeatures.com

Topic Overview

- 1. Mechanisms for which aeration can influence algal abundance and assemblage
- 2. Aeration Projects: Success and Failures
- 3. Aeration Design Considerations

Artificial Aeration/Circulation

Aeration Type:

Bottom Aeration Laminar Flow Diffused Aeration Destratifiers

Artificial Aeration/Circulation

Aerations Benefits:

- Water quality
- Phytoplankton
- Fisheries
- Sediment quality
- Benthic fauna

A REVIEW OF LAKE AERATION AS A TECHNIQUE FOR WATER QUALITY IMPROVEMENT

Aeration and Lake Water Chemistry

Main Chemical Parameters:

- 1. pH
- 2. Alkalinity
- 3. CO2
- 4. Phosphorous
- 5. Nitrogen

Influence Algal Abundance and Assemblage

(Duarte et al. 1992; Maileht et. al 2012)

Aeration and Lake Water Chemistry

Cyanobacteria have a competitive edge in higher pH and Alkaline waters

pH <8.5 Shift Possible pH 8.5-7.5 Variable pH <7.5 Shift Absolute

(Shapiro et al., 1975, 1977)

Aeration and Phosphorous

Aeration → Can Reduce Phosphorus

Microbe-mediated chemical transformations using Redox (mV)

Figure taken from Dodds, 2002

Aeration and Phosphorous

- Aeration maximizes a lakes ability to adsorb Phosphorous (Stumm and Morgan, 1970; Syers et al., 1973; Boyd, 1995; Shrestha and Lin, 1996).
- The Lakes soil determines the Phosphorus Adsorption Capacity (PAC). Organic matter reduces PAC (Borggaard et al., 2003 & 2004).

Aeration and Phosphorous

Ex: (3) 10 Year Lake Aeration Studies

Grochowska (2004)	Sinke (1992)	Gachter and Wehrli (1998)
Significant reduction in Total Phosphorous	Release rates went from 1 mg P/m ² ·day to 0.3 mg P/m ² ·day) in Lake Loosdrecht	No Significant effect on the internal phosphorus loading of two eutrophic lakes

Phosphorous Adsorption Capacity (PAC)

Aeration and Nitrogen

TOTAL NITROGEN

Figure taken from Bahia Del Mar case Study, un-published

- Denitrification can also occur under fully aerobic conditions (Robertson and Kuenen, 1984; Chen et al., 2003).
- "Aeration increased the abundance of nitrifying and denitrifying bacteria, resulting in higher mortality rates of cyanobacteria in aerated aquariums" (Yang et al., 2013)

- Dilution
- Light Limitation

Lorenzen & Mitchell, 1975

 $A = mixing off \quad B = mixing on$

Huisman et al. 2004

Pastorok, 1981

1) Lake Factors:

- Physical (Stratification, Depth?)
- Chemical (PAC, NH3, Color, pH?)
- Biological (TSI, BOD, HAB?)

2) Aeration Design Factors:

- Turnover
- #Diffusers
- Air Flow
- Placement
- Lifting Rates

Lake Factors:

<u>Physical:</u>	<u>Chemical:</u>	<u>Biological:</u>
Bathymetry Stratification Secchi	Surface and Bottom TP,TN,NH3, Profiles DO/Redox Conductivity	Chl-a Algae Zooplankton TSI

Lake Factors:

Bahia del Mar-St. Petersburg, FL Area: 14 Acres Depth 18 - 51ft

Aeration Design: Turnovers: <u>.60 per/day</u>

Aeration Design Factors :

Sizing to the highest denominator

Aerations Benefits:

- Water quality
- Phytoplankton
- Fisheries
- Sediment quality
- Benthic fauna

Lorenzen & Fast (EPA), 1977

Lorenzen & Fast Aeration Sizing Model

Model Based off:

- Nutrient Limitation
- Light Limitation
- Mixing Depth
- Max Chl-a
- Limitations:
- Grazing
- Parasitism
- Aeration design

Good Mixing = 1.33CFM/surface acre

FIGURE 1 THEORETICAL AND OBSERVED PEAK BIOMASS OF ALGAE IN KEZAR LAKE (ADAPTED FROM LORENZEN AND MITCHELL 1975)

Lorenzen & Fast (EPA), 1977

Lorenzen & Fast Aeration Sizing Model

Pastorak, R.A. et al 1982

Post Lorenzen and Fast Aeration Projects

Successful	Unsuccessful
Lake Brooker, USA (Cowell et al. 1987)	Sheldon Lake, USA (Oberholster et al. 2006)
Fischkaltersee, Germany (intermittent, Steinberg & Zimmermann, 1988)	Fischkaltersee, Germany (continuous, Steinberg 1983)
Solomon Dam, Australia (Hawkins & Griffith (1993)	East Sidney Lake, USA (Barbiero et al. 1996)
Nieuwe Meer, The Netherlands (Visser et al. 1996b; Jöhnk et al. 2008)	North Pine Dam, Australia (Antenucci et al. 2005; Burford & O'Donohue. 2006)
Lake Dalbang, South Korea (Heo & Kim, 2004)	Lake Yogo, Japan (Tsukada et al. 2006)
Bleiloch reservoir, Germany (Becker et al. 2006)	
Ford Lake, USA (Lehman et al. 2013; Lehman 2014)	

Why Did Aeration Fail?

Unsuccessful

Sheldon Lake, USA (Oberholster et al. 2006)

Fischkaltersee, Germany (continuous, Steinberg 1983)

East Sidney Lake, USA (Barbiero et al. 1996)

North Pine Dam, Australia (Antenucci et al. 2005; Burford & O'Donohue. 2006)

Lake Yogo, Japan (Tsukada et al. 2006)

Undersized according to Lorenzen and Fast, 1977!?

Sized to the Highest Denominator?

Ex: Sized to destratify. Used 63CFM but Needed 273CFM to improve algae

"The aeration destratification was not strong enough to prevent cyanobacterial blooms"

Aeration Benefits Vs. Cost

Aeration Feasibility Assessment = Cost Effective Design

Aeration Benefits Vs. Cost

COST PER ACRE

Average Cost per acre for <u>Correctly sized</u> systems **\$1,000**

Modeling Air Flow and # AirStations

Same Air Flow: **25.4 CFM** Different # of Air Station

Fig. 3. Effect of number of ports on total Chl-a.

Monzur & Takashi, 2000

Modeling Air Flow Vs. # AirStations

Better to distribute the air more evenly

Fig. 5. Generalized effect of air flow rate and number of ports on Chl-a reduction.

Monzur & Takashi, 2000

5 l/s = 10.6 CFM 10 l/s= 21.2 CFM 15 l/s= 31.8 CFM 20 l/s= 42.8 CFM

Modeling Air Flow Vs. # AirStations

Larson Lake

Area: 12 acres Volume: 152 acre-feet Mean depth (volume/area): 13ft Maximum depth: 39ft

Failed to Improve Algae

Wisconsin Department of Natural Resources, 1975

Modeling Aeration Start Time

Start aeration well before peak Chl-a

Fig. 6. Effect of starting time of bubbler on total Chl-a.

Monzur & Takashi, 2000

Modeling Aeration Start Time

Start time doesn't matter if Undersized

Monzur & Takashi, 2000

Summary

- Aeration designs should be site-specific and account for a lakes physical, chemical, and biological characteristics.
- Aeration systems should be sized to the highest denominator (phytoplankton).
- Consult with a professional.

Vertex Water Features Lake Aeration Systems & Floating Fountains

Questions

Patrick.Goodwin@vertexwaterfeatures.com Phone: 1-800-432-4302