Big data informing lake ecology: Case study on nutrient and water color effects on lake primary production

C. Emi Fergus, Andrew O. Finley, Pat A. Soranno, Tyler Wagner

Michigan Inland Lakes Convention
April 2016

Lakes in the landscape

Michigan over 10,000 inland lakes (>4 ha in size)

U.S. estimated over 120,000 inland lakes

Lakes in the landscape

Michigan over 10,000 inland lakes (>4 ha in size)

U.S. estimated over 120,000 inland lakes

How can we effectively study and manage them?

Landscape limnology

Landscape limnology

Patch characteristics

Principles

Patch context

Patch connectivity & directionality

Spatial scale & hierarchy

Landscape limnology

http://www.visitusa.com/maine

http://michpics.wordpress.com/2009/12/19/michigan-farming-and-other-success-stories/

Novel questions and perspectives

- Regional variation
- Broad-scale disturbance effects
- Prediction
- Temporal trends

Harnessing 'Big Data' to address lake questions

Harnessing 'Big Data' to address lake questions

Overall Goals

- More holistic understanding of lake ecology
- Provide information to guide management and conservation action

Case study

Lake nutrient and water color effects on lake primary production

Drivers of lake primary production

Nutrients

TP ~ Chlorophyll a relationship

Revisiting the TP ~ Chlorophyll relationship

TP ~ CHL

Spatial variation in relationships

Colored dissolved organic carbon (water color)

- Humic substances
 primarily from
 surrounding landscape
- Alters physical, chemical, and biological environment

Colored dissolved organic carbon (Water Color)

Negative effects

Weakens light

Shades algae

Positive effects

Nutrients bound to humic compounds

Nutrient-water color paradigm

Important to understand in time of global change

pubs.acs.org/est

Continental-Scale Increase in Lake and Stream Phosphorus: Are Oligotrophic Systems Disappearing in the United States?

John L. Stoddard,*,[†] John Van Sickle,^{†,‡} Alan T. Herlihy,[§] Janice Brahney,[∥] Steven Paulsen,[†] David V. Peck,[†] Richard Mitchell,[⊥] and Amina I. Pollard[⊥]

Nutrient

Freshwater Biology (2014) 59, 325-336

doi:10.1111/fwb.12267

Warming and browning of lakes: consequences for pelagic carbon metabolism and sediment delivery

EMMA S. KRITZBERG, WILHELM GRANÉLI, JESSICA BJÖRK, CHRISTER BRÖNMARK, PER HALLGREN, ALICE NICOLLE, ANDERS PERSSON AND LARS-ANDERS HANSSON Department of Biology, Aquatic Ecology, Lund University, Lund, Sweden

Landscape nutrient and carbon sources

- Agriculture –
 nutrient source
- Wetlands &
 Forest –
 carbon source

http://www.garthlenz.com/industrial-landscape/agriculture/Ches-Lancaster-8436

http://blogs.ubc.ca/thearodgers/2015/05/03/impacts-of-climate-change-on-carbon-emissions-from-canadian-peatlands/

Spatial Nutrient-water color paradigm

Spatial Nutrient-water color paradigm

Spatial Nutrient-water color paradigm

Research questions

- 1) Do TP and Water Color effects on Chlorophyll vary over space?
- 2) If so, are there lake and landscape variables that account for variation in these relationships?

Lake database

Spatially-varying coefficient model

Co-authors: quantitative ecologists with mad statistical skills

$$Chl_t(s) = \tilde{x}_t(s)\tilde{\beta}(s) + x_t(s)\beta + \epsilon_t(s)$$

Spatially-varying coefficient model

 $\widetilde{\boldsymbol{\beta}}(s)$ = Intercept, TP, and Water Color

Spatially-varying coefficient model

Hypothesized landscape & lake variables

- Lake depth
- Catchment: Lake Area ratio
- Agriculture
- Wetland
- Lake connectivity type (isolated vs. drainage)

Q1) Spatial variation in TP & Color effects?

Non-spatial

M_{NULL}: CHL ~ Intercept + TP + Color

Spatially-varying

M₁: CHL ~ Intercept + TP + Color

Vs.

Evaluated using model fit criteria

G = goodness of fit; **P** = penalty; **D** = model criteria

Gelfand and Gohosh 1998

Model	G	Р	D	
Null	5456.0	5435.2	10891.3	
1	4736.4	4502.9	9239.4	

Lower is better

Model	G	Р	D	
Null	5456.0	5435.2	10891.3	
1	4736.4	4502.9	9239.4	

Lower is better

Model	G	Р	D	
Null	5456.0	5435.2	10891.3	
1	4736.4	4502.9	9239.4	

Lower is better

Conclusions: Q1

Lake Chlorophyll exhibits spatial variation even after accounting for TP & Color

 Landscape, lake, & other spatial variables may explain remaining spatial variation

TP effects on Chlorophyll vary over space but Color effects were not significant for most lakes

 TP is primary driver of lake productivity in Upper Midwest and NE U.S.

Q2) Lake & landscape drivers of variation

Spatially-varying

M₁: CHL ~ Intercept + TP + Color

Q2) Lake & landscape drivers of variation

Spatially-varying

M₁: CHL ~ *Intercept + TP* + *Color*

M₂: CHL ~ Intercept + TP + Color + Depth + CA:LK + AGR + WET

Q2) Lake & landscape drivers of variation

Spatially-varying

M₁: CHL ~ *Intercept + TP* + *Color*

M₂: CHL ~ Intercept + TP + Color + Depth + CA:LK + AGR + WET

M₃: CHL ~ Intercept + TP + Color + Depth + CA:LK + AGR + WET + Connectivity

Spatially-varying

M ₃ : CHL ~ Intercept + TP
+ Color + Depth + CA:LK
+ AGR + WET +
Connectivity

M	G	Р	D	
1	4736.4	4502.9	9239.4	
2	4667.8	4508.4	9176.2	
3	4593.7	4495.0	9088.8	

Model 3: Global parameter estimates

Spatially-varying		Fixed over space					
βο	TP β ₁	Color β ₂	Depth β ₃	CA:LK β ₄	AGR β ₅	WET β ₆	Lake Type β ₇
-0.48 (-0.6 – -0.3)	0.68 (0.5 – 0.7)	0.01 (-0.09 – 0.13)	-0.01 (-0.01 – -0.01)	-0.0003 (-0.0005 – -0.0001)	0.51 (0.2 – 0.8)	0.13 (-0.34 – 0.65)	0.22 (0.1 – 0.3)

Conclusions: Q2

Hypothesized lake and landscape variables account for spatial variation

- To a great deal for Chlorophyll
- Moderately for CHL~TP
- And less for CHL~Color

Conclusions: Q2

BUT spatial variation remains

 Scale of variation remaining – help identify potential predictors to consider for future models

Big data informing lake ecology

- Evaluate existing theory
- Help meet management and conservation goals
 - Assess lake water quality and ecological health
 - Set regional restoration targets

